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SUMMARY

An inviscid discrete vortex model, with newly derived
expressions for the tangential velocity imposed at the separation
points, is used to investigate the symmetric and asymmetric vortex
separation on cones and tangent ogives. The circumferential
locations of separation are taken from experimental data. Based on
a slender body theory, the resulting simultaneous nonlinear
algebraic equations in a cross—flow plane are solved with Broyden's
modified Newton—-Raphson method. Total force coefficients are
obtained through momentum principle with new expressions for
nonconical flow. It is shown through the method of function
deflation that multiple solutions exist at large enough angles of
attack, even with symmetric separation points. These additional
solutions are asymmetric in vortex separation and produce side force
coefficients which agree well with data for cones and tangent

ogives.
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LIST OF SYMBOLS

Parameter of incidence (= a/§)

Lift coefficient

Lift coefficient at station i

Normal force coefficient

Normal force coefficient at station i

Side force coefficient

Side force coefficient at station i

Base area of a body of revolution
Free—stream velocity

Vortex core

Mean tangential velocity

Complex potential

Complex coordinate (= y + iz)

Complex conjugate of Z

Radius of a circular cross section of a body at an
axial station of X

Radius of the base area

Outward normal to a cross section of a body at X
Nondimensional lateral coordinate (= y/a)
Nondimensional vertical coordinate (= z/a)
Dimensional longitudinal coordinate
Dimensional lateral coordinate

Dimensional vertical coordinate

Angle of attack
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Sideslip angle

Semi-apex angle of a cone

Separation angle measured from the starboard
generator

Vortex strength

Nondimensional vortex strength (= I'/2maql)
Nondimensional complex coordinate (= Z/a)
Nondimensional complex conjugate coordinate (= Z/a)
Nondimensional complex coordinate of separation
position

Nondimensional complex conjugate coordinate of
separation position

Velocity potential

iii



INTRODUCTION

Recent and new fighters and missiles are developed to have
increased aerodynamic performance and high maneuverability. These
requirements frequently involve operation at high angles of attack
and consequently body separated vortices. Therefore, understanding
and predicting the flow characteristics near the body can be
accomplished only if these vortices are accounted for.

To represent mathematically the body vortex flow field, Bryson
(Reference 1) introduced two inviscid line vortices in the leeward
side of the body. He considered symmetric flow past bodies of
revolution. This approach was extended by Schindel (Reference 2) to
bodies of elliptic cross section and of cambered longitudinal
axis. By removing restriction to laterally symmetric flow, Dyer,
Fiddes, and Smith (Reference 3) extended this simple model to deal
with asymmetric vortex separation on cones. In all of these
investigations, a stagnation condition was imposed at the separation
line as the Kutta condition. On the other hand, Moore (Reference 4)
imposed a tangential velocity at the separation line based on an
expression derived by Smith (Reference 5). The effect was found to
be small in symmetrical flow.

Other methods used to predict the asymmetric vortex shedding
include the vortex cloud method (Reference 6) and solving the
complete Navier—-Stokes equations (Reference 7). As described by
Mendenhall et al. in their paper (Reference 6), in the vortex cloud

method a perturbation to the symmetric solution must be imposed in



order to obtain an asymmetric solution. In fact, every investigator
has a different means of introducing a perturbation to the symmetric
solution. The method which Mendenhall et al. used is to modify the
predicted symmetric separation point on either side of the body so
that the separation position is not kept syumetric. By solving the
complete Navier—Stokes equations at high @, the asymmetric vortex
shedding was found on a cone cylinder (Reference 7). However, the
asymmetry in the flow field was introduced through asymmetric
numerical truncation errors with the computed side force being too
small.

In the present study, different discrete vortex models will be
studied in the cross—flow plane. New expressions for the tangential
velocity at the separation line will be included in the models to
investigate the vortex flow effect on cones and tangent ogives in
both symmetric and asymmetric flows. The resulting nonlinear
algebraic equations are solved for multiple solutions (i.e. both
symmetric and asymmetric ones) based on a function deflation

concept.

MATHEMATICAL MODEL

Slender—body theory is assumed applicable. This leads to the
usual representation of the flow in terms of a streamwise
disturbance velocity which depends only on the streamwise
coordinate, and a quasi—two—~dimensional cross flow which is

independent of the Mach number. For cones, the flow is assumed to



be conical, so that the separation lines are straight lines, 0S; and
08, (see Figure 1). To represent the nonconical flow, a tangent
ogive is divided into several stations. Between two stations, flow
properties are assumed to vary linearly (i.e. 3T/3x = AT/Ax =
(Pi - Fi_l)/Ag, da/ox = (a; - ai-l)/A;’ etc.). The separation lines
are specified by their angular coordinates, 61 and 85, measured from
the starboard generator. The sign convention is that a positive
value of T represents a circulation which is counterclockwise when
viewed from downstream. With specified separation lines, the
problem therefore involves six unknown quantities, which include the
strengths and coordinates of two discrete vortices. These are
determined by six equations obtained from the following conditions:
(i) An analogue of the Kutta condition, namely that the
velocity vectors on the surface of the body at S; and S,
should be directed along the separation lines, 0S; and
059
In the past investigations, either a stagnation
condition (Reference 3) or a tangential velocity
(Reference 4) was imposed at the separation point. Since
the latter did not provide significant improvement to the
solution, a new velocity condition is needed.
In the vortex cloud method (Reference 6) the

relationship between the vortex strength and velocity at

the boundary layer edge, Ue’ is used, which is
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where K is an empirical factor used to reduce the strength
of the shedding vorticity. In a subsonic flow, K = 0.6, a
typical value suggested by most investigators. If half
value of Ue is taken as the average tangential velocity at
the separation point, as assumed in Swith's model

(Reference 5), then

2
(2v_)
U.EE = K il (2)
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For a cone with 3I'/3x = I'/x, the tangential velocity

becomes

2 2
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where Yy is the nondimensionalized vortex strength, and
Yy = T'/2waal
For a tangent ogive, it is assumed that

3T/3x = AT/Ax, and therefore

2 ma (T, =T, )
i 74 i-1

U AT ¢1/2 _ (U°a 1/2
Vtm = [.1-(- -—:] - [ K -— ]
2Ax 2ﬂaiAan
= U Ynla,y, — a, ,¥ )/ Axa (4)
i i¥1 7 qi-17i-1 :

where i means the present station and i-l1 means the



previous station.
However, experimental data (Reference 8) show that
the vortex convection speed in a shear layer is

approximately

Vtm = er (5)

where f = 0.61, instead of 0.5 used in Equation (2). Then

for a cone

v =20 Y1v8/a (6)

and for a tangent ogive

2fUa
YK

tm

/n(aiyi - ai_lYi_l)/Axa (7a)

Six models based on different f and K values are
investigated for cones in this report. They are
1. Stagnation separation model (Vtm = 0)

2, Model 1, Smith's separation model (Vtm = Ua/1Y8/a )

3. Model 2, f£ = 0.6l and K = 1.0 (V = 1.220 Ua/Ty8/a )
4. Model 3, £ = 0.6l and K = 0.6 (V __ = 1.575 Ua/my8/a )
5. Model 4, f = 1.00 and K = 1.0 (V_ = 2.000 Ua/myd/a )
6. Model 5, £ = 1.00 and K = 0.6 (V__ = 2.582 Uov/Ty§/a )

After testing, a best model with f and K values
written as fy and Kb will be chosen to investigate the
asymmetric vortex separation on cones and vortex flow
separation on tangent ogives. Based on fy and kb values,

Vtm for tangent ogives becomes
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(ii) A condition based on the fact that the fluid should
sustain no force.

In reality, when the flow is separated from a body,
there will be a vortex sheet with small strength shedding
from the body and finally rolling up into a concentrated
vortex. To simplify the physical problem, only the
concentrated vortex is used here; and a cut which connects

the vortex core to the separation point is introduced to

represent the sheet. It is required that the force on the
cut must be balanced by force on the vortex, as described
in Bryson's paper (Reference 1). In the vortex sheet
model (Reference 9) usually a cut is introduced to connect
the end of the sheet to the vortex core. The cut is much
larger in the present model than that in the vortex sheet
model. Although the force on the cut has always been
included in the model in the past, a numerical
experimentation will be conducted in the present study to
determine its effect on the solution.

Following the usual development of the slender-—body theory, the
cross—flow velocity potential, ¢, is constructed as a solution of
the two-dimensional form of Laplace's equation in the plane of
transverse coodinates y and z (see Figure 1). In a conical flow,

all such planes are equivalent. The velocity components are the



same at points whose y and z coordinates are scaled by E, and the
vortex circulations are proportional to Xe
The boundary conditions for the far field and on the body are

¢, ~Ua as |Z] » (8)

¢n = U(slocal for IZ! - Glocalx B alocal (9)

where U is the free—stream speed, n is the outward normal to the
cross section of the body at a constant i, $10cal is the angle of
local slope, and 215cal is the radius of this section.

The complex potential may be written as
r

2 T Z -1 Z -1

W= iUa(z - 2 + va 92 gnz + 2#1 %n ; — - Zii %n 5 —
z dx z - @/2)) z - (a"/z,)
(10)

where the first term comes from the cross—flow stream in the
presence of a circular body. The second term represents the area
expansion in the x direction. The third and fourth terms are due to

the vortices outside the body and their images inside the body.

Using the nondimensional variables ¢ = z/a, y = I'/2wadl, the
Kutta condition and the force—free condition can be written as

Kutta Condition

£y 1
VtIn = 2aUcosel - aUY1 76 my +
(e = g, )(e z,)
1 1
2, %, = 1
222
Y, =73 =19 (1D
e Y-z -7
2 2
Clzl -1
—Vtm = 2aUcos62 - aUYl T8 — +
2 2 -
(e - Cl)(e - Cl)
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Wy, =735 16 (12)
(e 2 -y *-7.)
2 2
Force-Free Condition
z 2,2, - 1
'i(l+'17)+'r,—1'5+iY1_:_1"—+iY2[ 272 — ]_
Z, 1 g% ~ 1 (c1 - cz)(clc2 - 1)
S VRS £ 1 U A T e T,
~ — - (z, - ¢, ) =0 (13)
- - 1 S
alAx aYle 1
z g, ¢, - 1
-i(1 +-%—) + ElE - iy, — 2 - in[ 1 l_ | -
z, 2 gyty — 1 (g, - cl)(czcl -1
aigzi B oS A O fi-1M1
- - = (¢, — g5 ) =0 (14)
alAx aYle 2

where Yy and Y, are evaluated at the current station i and Ax is a
dimensional quantity.

By separating the force-free condition into real and imaginary
parts, the system of equations which needs to be solved consists of
six nonlinear algebra equations of six unknowns: Yo Yor Yo
zl(;l =y, * izl), Yoo and zz(c2 =y, izz). The system can be

rewritten——with Y1s 21, etce, representing y; , 2}, 6, etc.—"as
i i

2w a2
Fl = v 1 1 -
1 (cosb, - ¥y )2 + (sin6, - z )2
1 1 1 1
y§+z§—l _
Y2 )

7 o
(cose1 - y2) + (81n6l zz)
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yf + z% -1
F2=v ) 7"
(cose2 - yl) + (51n92 - zl)
yg + z% -1
Y -
2 2 . 2
(c0592 y2) + (51n62 zz)
2cos6,, - Vtm/Ua =0 (l16)
v,z a, - a,_ y z
3 = - 11,137 3 L,y L,
G2 +25H? ¢ AR Srgt 1yt 2
172 Y17 % Y173

2 2
Yz(yz + z, l)[(z1 zz)(yly2 +z 2, 1) + (y1 yz)( y 2y * yzzl)]

2 2
[y = 3" + Gy = 2%y, + 212, - DY+ (3,2) = y,2,)%]

a, Y1, ~ ¥y, Cay_g/ay) ayvy -oag vy
i i i-1 i i-1 -
- - (y, — cos6,) =0 (17)
o = = 1 1
Ax anYl
i
2"'22 a = a z
_ 1 7% 1% " %4-1 1 1Y)
F4 = =[1 + —s 5l - = + +
( - z7) @ Ax y2 + 22 y2 + z2 -1
Y1 1 1 1 1 1

2 . 2
Y (yy *zy - DGy = y,)0yy, + 212y = 1) = (2) = 2))(y,2, + y,z))] .

[(yl - yz)2 + (z1 - z2)2][(y1y2 tzz, - l)2 t (yy2; - ylzz)zl

oz —zy (g /) Ay - ai—lYli_

a8 i i-1 i 1
L + (z, - sinB.,) =0 (18)
2 - Z 1 1
Ax anyl
i
Yoz a.- a,_ y z
F5 = -2 ‘ 272 +‘i i i-1 2 y +
L+ 2)2 a " 2 2, 2 _
Yo T %y ) 2 Mg 2
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Yl(yl tz, l)[(zl

-2y, *tzyzy -

[y, - y,)" + (2

)
= 2y) My yy *+ 202y -

2 2
-+ (yzzl - ylzz) )

a, Y2, 7 Yzi_l(ai—l/ai) LV -1,
S - (y,— cos6,) =0 (19)
a - - 2 2
Ax anYl
i
y2 - z2 a, — a z y
F6 = _[1 + 2 2 ] 1 i i-1 2 -y 2 +
( 2 + 2)2 a A% 2 + 2 2 2 + 2 1
Y2 7% % Y2 T % I

2 2
Yl(y1 + oz l)[(y1 yz)(ylyz toz2,

D = (2= 2))(y,2) +y,2))

3 7 ) 7 +
[(yl - y2) + (z1 - zz) ][yly2 tzz, - N~ + (yzzl - ylzz) ]
a, %27 %2, Gi-1/20 A T AaM
L + (z, - sin6,) = 0 (20)
a - - 2 2
Ax anYl
i
For a cone, these equations can be simplified to
y1 + zf -1
FlL =71, 7~
(cose1 - yl) + (51n6l - zl)
y% + z% -1
Y, ( — )2 T coins )2 - 2cosb; + Vtm/Ua =0 (21)
cosb, -y, sinb, - z,
I S
1 1
F2 =y 3 7~
(cose2 - yl) + (51n62 - zl)
y% + z% -1
Y 7 = 2cosb,y - Vtm/Ua =0 (22)
(cosb, - y., ) + (sin®, - z,)
2 2 2 2
Y,z y Y2
F3 = -2 1L 428 , L _+ 11 +
e hl el 2, .2 -,
Y17 %1 71 Y1 1
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(yy + 25 — DIz = 2,00y 5y + 2,2,71) + (y; = y,))(=y,2, + y,2))] _

Y2 v ) 2 )
[(y1 - y2) + (z1 - zz) ][(yly2 +z,2, - D™+ (y221 - ylzz) 1
[yl + (y1 - cosel)lé/a =0 (23)
y] - 21 z \0P4
Fo = -[1 4L 18 1 1’1
( 2 + ZE)E o 2 + ;7' 47’+ ZZ -1
Y1 1 Y1 1 71 1

2 2
(y2 +zy - 1)[(y1 - yz)(yly2 +z,2, - 1) - (zl— zz)(-ylz2 + yzzl)]

Y2 7 7 ) )
[(yl - y2) + (zl - z2) ][yly2 +zz, - nH- + (yzzl - ylzz) ]
[z1 - (slnel - zl)]d/a =0 (24)
Y2 y z
F5 = 2 —ptlf 48 2 2 +
2 27 QT 7 2, 2 _
Yo T 2y Yo T 2 Y T %

2 2
(y1 *z) 1)[(z1 zz)(yly2 tz2, 1 + (yl yz)(-ylz2 + yzzl)

TG <y - 2 Gy + - 1%+ gz, - y,2)°]
Y1 7Y 21 7% V172 T 315 Yo% T V1%
[y2 + (y2 - cosez)]S/a =0 (25)
y2 - 22 z y
_ 2 "%, & 2 2
F6 = ~[1 + PR 2v AR Ry SR T B
Y2 2 Yo T % Yo T %

(yi + zf -~ 1)[(y1 - yz)(yly2 tzz) - 1) - (z1 - 22)(_y122 + yzzl)]

151 7 i 2 7
[(yl -y, )T+ (zl - zz) ][(yly2 tz2z, - n- + (yzzl - ylzz)

[z, - (sin®, ~ zz)]G/a =0 (26)

2 2
A detailed derivation of these equations is presented in
Appendices A and B. The last terms in Equations (17)-(20) and (23)-

(26) are the effect of the force on the vortex cut. These terms are

eliminated if the force on the cut is not included in the model.
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During the solution process, Fl through F6 may not be zero. As an
indicator of convergence, a norm based on Fl through F6 is defined

as

Norm = (F12 + F22 + F32 + 742 + 752 + Fo2)1/2 (27)
Variables Yl’ YZ’ Yo z;s Y, and z, are regarded as a set of
solutions when the norm is less than or equal to 1078,

It is necessary to supplement the Kutta condition as specified
in (i) above, with the condition that the flow leaves the surface at
the separation line. This is because the condition that the
velocity vector lies along a conical ray is satisfied at an
attachment line as well as at a separation line. The difference
between the two is that the flow leaves the surface at a separation
line and approaches it at an attachment line. To confirm the
solution, the nature of the flow near the separation line is
checked. When the flow is separated, it would leave the surface to
downstream side. Therefore the derivative of tangential velocity
with respect to the angular position 8, th/de , should be less than
zero at a correct separation point. If the derivative is greater
than zero, the flow is regarded as approaching the body surface
rather than leaving it. Therefore, the specified separation line is
a reattachment line, not a separation line. The expression of the
derivative 1is shown in Appendix C.

After solutions have been found, the local sectional
coefficients of normal force and side force are calculated by

integrating the local complex velocity potential in accordance with

12




the momentum principle of fluid mechanics (see Appendix D). The
total force coefficients can be obtained by integrating the
sectional coefficients over intervals of longitudinal stations. The

results are

2
n 2aai 1
N T .zl 7 21y 4 - =) ~ 2y v, - -
i ag 1 1 i i Yo z,
i i i i
2
3i-1
2Yl v, — (1 - 3 5 ) +
i-1 "i-1 a; y + z;
i-1 i-1
a2 a2
2.y -l o1 ) +1 - 221 (28)
2, 2 2 2 2 2
i-1 7i-1 ai Yy + z ai
i-1 i-1
n 2aa, 1
Cy = > _2Y1 z, (1 > ) + 272 z, (1 5 > ) +
i=l ap i i y; *tz; i i Yo * 2y
i i i i
a2
i-1 1
2y, oz = - — )
i-1 "i-1 ai y1 +z1
i-1 i-1
aZ
2.z 1l - 1 )} (29)
2, 2, 2 2 2
i-1 “i-1 ai Y, + z,
i-1 i-1
CL = CNcosa (30)

where ap is the radius of the base area. For a cone, the equations
for force coefficients can be simplified to

1 1

Cy = 2a{2ylyl(l - =) = 2,y,(1 - ———) * 1} (31)
v * 2 vy * 2

13



= 20~ N S U S
C, = 2of{-2v)z, (1 - — P e A 2} (32)
Y2 73 Yo 7 %2
C, = Cycosa (33)

A numerical scheme based on Broyden's concept (Reference 1l1) is
used to solve the system of nonlinear algebraic equations. The
advantages of this scheme are i) unlike in Newton's method, the
gradient matrix is calculated by an approximate but inexpensive
method; for a complicated system of equations, the computing time is
significantly reduced; and ii) using an optimizer described by
Broyden, even poor initial guess does not seem to affect the final
convergence of the method because the optimizer tends to pull the
values close to the solution. Therefore, the calculation can be
restarted from where the program stops without convergence.

In finding the asymmetric solution, a function deflation
technique is used. The concept of function deflation is described
as follows (see Reference 12 for details). Let F(X) be the
nonlinear system of equations to be solved, F representing Fl, F2,
F3, F4, F5, and F6 in the present case and X representing variables
Yl’ YZ’ Yi» 215 Yo and Zye Assuming R representing YRl, YRZ,

le, le, sz, and sz is one root of F(X), i.e. F(R) = 0, Dividing
the original equation F(X) by ||X - R||, the effect of root R is
eliminated so that additional roots can be found. Note that ||X -

R|| represents the norm of X - R. It is defined as

2 2 2
g )Gty )T

1% = RI| = Ty, = v )
LR 2 1

14



(2, - le>2 + (y, - yR2>2 * (2, - zR2)2]1/2 (34)

Mathematically when X approaches the first root Ry, F(X)/||X = Ry]]
becomes the derivative of F(Rl) which does not vanish unless R;

happens to be a multiple root. The mathematical expression is as

follows:
G(X) = —FX) (35)
1% - &
lim G(X) = 1im —EX) _ F'(R)) (36)
X>R, X>R ) |[X - R[]

Experience shows that using the aforementioned concept of
function deflation, convergence to previously obtained roots can

always be avoided.

RESULTS AND DISCUSSIONS

To investigate the flow on a cone, the separation line must
first be specified. Since one of the main purposes in the present
study is to show that the asymmetric vortex separation is part of
the multiple solutions in the boundary value problem, the symmetric
separation lines will be based on an empirical equation (Reference
13) for predicting separation angle in a laminar flow, as

1/2110.76 + 0.0246] (37)

8 = [73 - (51l.4a - 450)
Equatidn (37) has been shown to work very well in the range of
10° € a < 30°

for semi cone angles of

15



5° < § < 20°
For tangent ogives, the following equations given in Reference
14 are used to predict the separation position. That is

10° € a < 40°

6 = (13.12 + §)(3.13 - /0.116a - 1.16) for { (38)
0° < § < 15°
0° < a < 10°

6 = 3.13 (13.12 + §) for { (39)
0° < § < 15°

As explained by Schindel (Reference 13), the equation of
predicted separation condition is taken from Crabbe's theory which
agrees with experimental data only in some ranges of angle of attack
and cone angles.

In addition, to study the separated flow on tangent ogives, an
additional information is needed; that is, the axial stations
downstream of which symmetric and asymmetric vortex separation will
occur. Numerical experience indicated that at a small «, such as
three degrees, the flow field can be assumed to be attached and the
normal force coefficient can be calculated with the slender body
theory (i.e. Cy = 2a). At a slightly higher a, such as four
degrees, a search is then made to find a station (called ;l) at
which symmetric vortex flow can be calculated: i.e., the boundary

value problem has a solution. For this purpose, let

Aocal = */814cal (40)

where Slocal is the angle of the local surface slope. The value of

Ajocal 2t ;l’ Aiocal’ will be the one used at all angles of attack

16



to determine where symmetric vortex flow will begin. That is, at

S

local’ symmetric vortex flow is assumed

any station where Alocal > A

. S . .
to exist. For a cone, A was determined to be approximately

local
l.2. Over the portion of the body with attached flow, the classical

slender body theory is used to calculate the normal force
coefficient.

For asymmetric vortex flow on a tangent ogive, note that
experinental data indicated that asymmetric flow would not start

until an Ay = ZBA (Reference 15), where 0, is the cone half angle,

or, for tangent ogives,

% /d
6, = tan I| > ] (41)
(£N/d) - 0.25

At a = aav’ a search is made to find the first station after which
the total side force coefficient (Cy) is nearly zero (a value of

0.06 is assumed). The value of Alocal at that station, defined

a
local’

flow will begin at all a » S For a < a

as A is then used to determine where the asymmetric vortex

av? only symmetric vortex

flow is assumed to exist.

Cones

Symmetric flow is investigated first, using the six models
mentioned earlier. Results for symmetric flow are compared with
experimental data in Figures 2 to 7. The experimental data of ¢,
are taken from Reference 16. In Figure 2 and Figure 3, all flow

models are with a force on the vortex cut in the force—free

17



condition. In figure 2, the vortex core positions of a five-degree
cone are presented. It is seen that flow model 4 gives good
prediction of lateral core positions, but all flow models seem to
underpredict the vertical positions. Vortex core positions of a
ten—degree cone are shown in Figure 3. It is found that all models
overpredict the lateral positions and underpredict the vertical
positions. This may be explained by a large force on the vortex
cute In addition, when the angle of attack is less than 20 degrees,
the theory does not predict the presence of vortices but experi-
mental data show otherwise. In Figure 4, results without the force
on the vortex cut for a five-degree cone are presented. Flow models
3 and 4 are found to have accurate prediction in both lateral and
vertical positions. Results for a ten—degree cone for all models
without the force on the vortex cut in the force-free condition are
shown in Figure 5. The prediction of vortex core positions is more
accurate than models with a force on the vortex cut in the force-
free condition. In all these figures, it is seen that the effect of
imposing a tangential velocity at separation points is to make core
positions more inboard and lower as V. is increased.

The lift coefficients calculated by all flow models
with/without a force on the vortex cut in the force-free condition
are plotted in Figures 6 and 7. Both figures show that CL is
reduced by increasing Vtm' The force on the vortex cut seems to
reduce Cp in the stagnation separation model and model 1. However,

its effect is small in other flow models. Overall, it is found that

18



model 3 without the force on the vortex cut is the best flow wnodel
which produces results having good agreement with experimental

data. Therefore, this model will be used to investigate the
asymmetric vortex separation on cones and the vortex flow on tangent
ogives.

After determining a symmetric solution, a function deflation
technique is used to search for additional solutions. It is found
that one asymmetric solution at a given a can always be found except
at low a's. Pairs of symmetric and asymmetric vortex core positions
on an eight—-degree cone for different incidence parameters A based
on flow model 3 without a force on the vortex cut in the force-free
condition are shown in Figure 8. The predicted coefficients of lift
and side force are compared with experimental data (Reference 16) in
Figure 9. The prediction of side—-force coefficient appears to be
accurate, but the lift coefficient is overpredicted. This may be
explained by the inaccuracy of the slender—body theory. 1t is well
known that the slender—body theory will overpredict the 1lift if the
fineness ratio is not large enough. Therefore, the concept of
effective angle of attack as shown for delta wings (Reference 17) is
used to improve the result. When the 1lift coefficient predicted by
the slender-body theory is taken to be 2acosa, which is equated to
the lift coefficient given by a three—dimensional linear theory for

a body in attached flow, an effective angle of attack, a,, can be

e)
found. The results predicted by using effective angles of attack

are shown in Figure 10. The lift coefficient agrees well with
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experimental data, and the predicted side force appears to be
slightly lower at high a. The effective angles of attack at
different geometric a for different bodies are listed in Table 1.
When the stagnation separation model is used to predict the
asymmetric separation, the left vortex (with higher vertical
position) has larger circulation than the right one (with lower
vertical position). As the tangential velocity, Vim» on the
separation line is increased, the left vortex will have smaller
strength than the right one. Therefore, the effect of imposing the

tangential velocity at the separation points in asymmetric case may

be regarded as changing the larger vortex strength from one side to
the other. The vortex strength ratio predicted by the stagnation
separation model and model 3 are shown in Figure 1ll. The switch of
vortex strength can be readily seen in the figure.

In Moore's paper (Reference 4), a branch of solution was
regarded as physically meaningless and was called a lower-branch
solution. Because the vortex core position is lower than the
separation line, and the derivative of tangential velocity with
respect to the angular position at the separation line is greater
than zero, the specified separation line is actually an attachment
line, not a separation line. Lower-branch solutions are also found
in asymmetric cases. The pairs of lower-branch symmetric and
asymmetric vortex core positions are plotted in Figure 12, and their
strengths are compared with the physically meaningful (upper-branch)

solutions in Figure 13. The numerical results for the upper and
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lower branches for an eight-degree cone are listed in Table 2 and

Table 3.

Tangent Ogives

The procedures for calculating vortex flow on tangent ogives
are described as follows. The symmetric solution at a station at
which A) .,1 is reached is first determined. This step may require
several trials to find that particular station. Symmetric solutions
at stations downstream of this particular station are then
calculated. These procedures are repeated for all angles of attack.

To calculate the asymmetric solution, a search is started to
find the station at which Ajoecal equals Aiocal' Then the converged
symmetric solution at that station is disturbed to get an initial
guess of the asymmetric solution. In the present method, the
magnitudes of y; and y; are reduced to make the initial guess
asymmetric. Through the functional deflation procedure, the
asymmetric solution can be found. The same idea is applied to all

downstream stations.

The converged symmetric solution at a station at which Aj5ecal

a
local

attack. Then all procedures are repeated until all desired angles

equals A is used as the initial guess for the next angle of
of attack are processed. When a < Qgys only symmetric solution is
assumed to exist.

Two tangent ogives with fineness ratios of 5.0 and 3.5 are used

for correlation. The effect of the number of integration station in
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the axial direction on the predicted normal force coefficient for a
tangent ogive of fineness ratio of 5.0 is presented in Figure 14.

As the number of integration stations is increased, the location
where the vortex separation first occurs can be more accurately
predicted. It is seen from Figure 14 that for the normal force
coefficient, the effect of the number of integration stations is
small., In addition, the normal force coefficient remains nearly the
same under the condition of symmetric or asymmetric separation until
a > 30 degrees. At these higher a's, the normal force coefficient
is higher in asymmetric cases. The side force coefficient is shown
in Figure 15. It is seen that the value of Cy is more sensitive to
an accurate prediction of where vortex separation first occurs in

the axial direction. The magnitude of C_, appears to be well

y
predicted when the number of integration stations is adequate. At a

= 30 degrees, the C, value starts to increase rapidly. However, its

y
magnitude is still low and the vortex positions are therefore quite
close to those in the symmetric case, as shown in Figure 16. 1In
Figures 17 and 18 the overpredicted normal force coefficient and
side force coefficient are improved by the concept of effective
angle of attack.

For a tangent ogive of fineness ratio of 3.5, the lift
coefficient is presented in Figure 19, and the side force
coefficients in Figure 20. It is seen that the 1lift coefficient is

overpredicted. This can again be improved by the concept of

effective angle of attack, as shown in Figure 21 where the lift
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coefficient is shown to agree well with experimental data. However,
the predicted side—force coefficients based on effective angles of
attack (Figure 22) are small and lower than the experimental data.
Values of effective angles of attack at different geometric a's are
listed in Table 1. Calculated vortex positions agree well with data
in Reference 20, as shown in Figure 23.

Sensitivity of side force coefficients due to asymmetry of
separation points is illustrated in Figures 24 and 25. 1In the
calculation, the left separation point is kept fixed at the value
used in the symmetric case, and the right separation point is
shifted up (+A0) and down (-A8) from the symmetric case to obtain
the asymmetry of separation points. The side force coefficients for
a cone, being nearly zero, are seen to be insensitive to A8 as shown
in Figure 24, Since the separation point on the left side is kept
fixed, the vortex strength is nearly the same as in the symmetric
case. On the right side, the vortex strength is reduced with the
separation point shifted up with the resulting vortex being more
outboard. On the other hand, the side force coefficients for a
tangent ogive with fineness ratio 5.0 are shown in Figure 25 to grow
with A8, To produce an experimental side force coefficient of 2.25,

the right separation point must be shifted up by about 12 degrees.

23



CONCLUSIONS

Based on modified Bryson's vortex models, symmetric and

asymmetric vortex separation on cones and tangent ogives were

investigated. The modifications pertain to a tangential velocity

imposed at the separation points and a force on the vortex cut in

the force—-free condition. It was concluded that

1)

2)

3)

4)

5)

Adding the force on the vortex cut in the force-—-free condition
would push the vortex core more outboard and lower, thus making
an inaccurate prediction as compared with available data.
Increasing the imposed tangential velocity at the separation
points would make the calculated vortex core more inboard and
lower. The strength of the vortex with a higher vertical
position (i.e. the left one) would decrease, and that of the
one on the right with lower vertical position would increase in
asymmetric cases.

Through a numerical scheme based on the concept of function
deflation, multiple solutions to the problem of vortex
separation on cones and tangent ogives were shown to exist.

The asymmetric solutions were shown to exhibit characteristics
which were observed in experiments with asymmetric vortex
separation.

The predicted side—force coefficients for cones and tangent
ogives agreed reasonably well with available data.

Asymmetric separation points could produce vortex solutions
which generated large enough side forces as measured in

experiments for tangent ogives, but not for cones.
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APPENDIX A

FORMULATION OF KUTTA CONDITION

The complex velocity potential at a constant x section with

slope change da/dx can be written as

2 T zZ-12 r Z -2
W= ila(z -5 +UaZe oz 5T 5 = 7 r=3
dx z-alz z-alz,
(A1)
For a constant slope change in every section (such as a
cone), da/dx can be replaced by 8. Then
2 T
dw a da 1 1 -1 1
2= ~iUa(l + 25) + Ua = = + 5= [ - —] -
dz ZZ dx Z  2mi 'Z Z1 7 - aZ/Z1
T
2[1 l] (
- — - A2)
2ri 'z Zy o - 82/22

Using nondimensionalized variables (z and v) such that z = ag

and T = 2waaUy, then

2waly, o
daw 1 da 1 1 1 1
= = -iUa(l +—5) + U —= =+ [+— - ] -
dz 2 = mi Z-z, . az/z1
2ﬂaaUY2 1 1 ]
27wi Z - 22 7 - 32/22

1 da 1 1 !
~1Ua(l + =) + U —= = - 107, of e = — ] +

z dx & & Z;l ccl -1

z
iUYza[c L = 2 ] (A3)
2 ccz -1
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4
1 dw 1 da 1 1 1
T = (] ) = - [ - - — ]+
Ua dZ 2 iz o 1z - ¢, £z, - 1
T
1 2
iyz[C — - ] (A4)
2 c;z -1

V.= In{- ==}

tm 191

Z=ae

where Vtm is the mean tangential velocity and Im is the imaginary
part of a complex number. Then

i6

- . 1 daw
-
1
Z=ae
i6
= Im{-e an(Tl]-& aw } 10
dz _ i
Z=ae
10 z
= Im[—e IUa{-i(l +-1§) +'g§'13 - 1Y1[ i - — 1 ] +
gt ax © PR g -
T
2
iy, - ]}]
2'z - ¢ = _ i6
2 4% 1 r=e 1
i6 i6
~ 1 1, 1da 1
= Im{ie (1 + 575 -~
e dx e a
10 z 10 z
1 1 1 1 1 2
iye [ 5 T5= 1] iy,e [ 5 5o 1]]e . ¢ Ua
SRS SRS 1
10 -1 16 .z, - 1
_ 1 1, _1da 1 1°1 _
= Imf{i(e ~ + e ) - = = + iy,e 5 o
(e - cl)(e gy 1)



iyye ) 15

(e - Cz)(e cz - 1)
2,5, - 1
= . _1da 1°1 _
= Im{12cose1 5 = + 1y, ) =I5
(e (g, - e l)
1 1
2, %, = 1
272
1Y =15 =16, jva
(e - CZ)(CZ e )
z, g, - 1
171
= - +
{2cos8) = 71 6, =T:
(e - g )e z,)
£, Ly = 1
272
1 -
e - 2)
Let gy =¥y + izl, Ly =¥, + izZ. Then,
Vim = {Zcose1 - vt
(y; + 1z)(y; ~ 1z)) - 1
+ - ¥ -1 - -
TThosel i sinei) (y1 izl)][(coééi i sinel) (y1 izl)]

(y2 + izz)(y2 - izz) -1
+ 1 sinel) - (y2 + izz)][(cose1 -1 s1nel) - (y2 - izz)

Y2 [(cose1 }Ua

yf"’z%" 1
- {2cos61- Y1 T(cos0.— y) ¥ 1(sinb,- z, )] (cosb — y,) - i(sinB - z )] +
1 1 1 1 1 1 1
2 2
y2+22 1

}Ua

Y2 [(bosel - y2) + i(sine1 - zz)][(t:ose1 - y2) - i(sine1 - zz)]
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yf + zi -1

= {2cose1 -y 5
(cose1 - yl) + (sine1 - zl)

2 2
Yy + z, = 1
}va (A6)

(cosB, - yz)2 + (sin® )2

1~ 2%
Define
y%*’zz-l

XKl = 1 (A7)

(cose1 -yl)2 + (sine1 - z1)2

and

y% + z% -1
XK2

, (48)

(cose1 - yZ)2 + (sin®6 )

1 %
Then the separation velocity on the right side becomes

vV = Ua(2cose1 -y

* - *
em XK1 Yy XK2)

1
or

* + * - + =
Ua(XK1 Y, + XK2 Y, 2cosel) Ven 0 (A9)
For the separation velocity on the left side,

18, aw |

az

Therefore,

y§+zf-l
-Vtm = {2c0582 -y 5 5 +
(c0582 -y) + (sine1 - zl)

2 2
y2+z2 1

Y, 5 51Ua (A10)
(cose2 - yz) + (sin62 - zz)
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Define

y% + z% -1
XK3 = 5 5 (All)
(cos@2 - yl) + (sine2 - zl)
and
XK4 = - > 5 (A12)
(cose2 - yz) + (sine2 - z2)
The separation velocity on the left side becomes
- = - * - *
Vtm Ua(2cose2 Y, XK3 Y, XK4)
- * * - =
or Ua( 2cose2 + Y, XK3 + Y, XK4) Vtm 0 (Al13)
Define
= * * -
Fl = XKl Y, * XK2 Y, 2cos91 + Vtm/aU (Al4)
= * * — -
F2 = XK3 Y + XK4 Yy 2cos92 Vtm/aU (Al5)

In Bryson's model, the separation line is required to be a stream
line of tLe three dimensional flow, so that V.., the mean tangential
cross—flow velocity component at the separation line, is zero. However,
by considering the behavior of a vortex sheet model at the separation
line, Smith (Reference 9) derived an expression for Vem» which can be
applied whether the sheet is present or not. For a body of revolution,

such as a circular cone, with the separation line along a meridian,

Smith's expression becomes

_ (U drq1/2
Vo, = [5=] (A16)
dx

By the assumption of conical flow, Vim becomes
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- [Uury1/2 _ Tam _11/2 _ . (Tamadi1/2 _
v, = [2-5] U[§E§Z§] U[iﬁ;;;] Ua/TY8/a (A17)

For nonconical flow, it is assumed that 3T/8x = AT/Ax. Then

(r, =TI, _a,n (r, - r, ,)a,ma
UATq1/2 i i-1791"71/2 _ i i-1791"741/2
Vo = =17 = 1] - 177 = v - ]
2Ax% 2UAxa.m 2UAxa, o
i i
= Ua[(a Y. = a, Y, ) ° n/AQa]l/z (A18)
i'i i-1'i~-1

However, considering the vorticity flux across the boundary layer at
separation, as in the vortex cloud method (Reference 6), the relationship
between the vortex strength and the velocity at the boundary layer edge,

U may be written as

e’
r 2
e U
ar _ U _ e
Tl { T Udr = 7 (Al19)
(o]

where the nonslip condition is satisfied at r,e In the vortex cloud
model, an empirical factor, K is often used to reduce the strength of the
shedding vorticity. Various investigators recommended a value in the
range of 0.6 < K < 1.0, with 0.6 being a typical value in subsonic

flow. It follows that

U2
at = 2
9x

If Vin is equated to one half of the shedding velocity, then for a

cone

Vtm=.2_e;=/_2.1%.§.£.=_l_,/%.?%=p:‘- eI (A21)
x /K ax /X

For tangent ogives with 3I'/3x = AT/Ax,
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) o n/Axo (A22)

——— — TS pem—

g - Y. T &, 4Y._
2K % /R 2 P /R i'i i-1'i-1

On the other hand, experimental data (Reference 8) showed that a
vortex in a shear layer tends to be convected with a speed less than the
free stream, so that

Vtm = er (A23)

where £ = 0.61. 1If this separation condition is used, then V . for a

cone becomes

Vem = 2 %g 3% - 2t /1v87a (A24)
4 ) 4 YK

For a tangent ogive, Vt is

m

2f U 3T _ 2fUa

tm 2 o R /(aiyi - ai_lYi_l)n/Axa

(A25)

Six models are tested for a cone based on these different separation
conditions. They are

(1) Stagnation separation model (V.. = 0)

(2) Model 1, Smith's separation condition (V. = U/ny&/a)
1.220 Ua/my8/a)
1.575 Ua/mY8/a)
2,000 Ua/7Y8/a)

1.00, and K = 0,6 (Vtm = 2,585 Ua/mY8/a)

(3) Model 2, f = 0,61, and K = 1.0 (Vtm

(4) Model 3, £

0.61, and XK = 0.6 (Vtm

(5) Model 4, £ = 1.00, and K = 1.0 (V.

]

(6) Model 5, f
After testing, a best model with the best f and K values, fy and Kps
is chosen to investigate asymmetric vortex separation on cones and vortex

flow on tangent ogives. Based on fy and Ky values, Vip for tangent

m

ogives becomes

) Zbea

v
!K
b

Yn/Axa (A26)

Magy, =8 1Yy
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APPENDIX B

FORMULATION OF FORCE-FREE CONDITION

There are two parts of contribution to the total force:

(i) Due to the inclination of vortex line

F_=-ipl_[ lim (55 - 5 ———=) - Udz_/dx] (B1)
v v v v

(i1) Due to potential jump on cut
F, = 1pU(dr_ /dx)(z - z.) (B2)

where Z,, is the vortex core position and Z; the separation point
coordinate.

The force—-free condition is

F +F =0,
v c
or F + F =0;
v c
that is,
r = 4ar
dw \4 1 dz v = - _
ipI‘v[ lim (E- -2—1.6: —z——_-—z— U ——:] ipU —_ (ZV ZS) = 0 (B3)
Z->Zv v dx dx
Therefore,
r dz dr
T 2 Taes RS LR SR
Z+Z dx v dx

Dividing both sides by Ua, it is obtained that

r dz dar

1 dw v 1 1 v a v = =
e memam - == mem + -
Lim (Ua dz 2milaa £ - ) a - al - (Cv Cs)
v dx v dx

YAIA
v
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Since

L
1 aw 1 da 1 1 1
— e (1 + =) + = = - iy, [ - — ]+
Ua dZ i;2 d= © 1'z Z, ez, - 1
T
1 2
A e
2 ;;2 -1
it follows that
Y z
1 daw 1 1 1 da 1 1
T e = =11 + =) + = et iy — +
Ua dZ iz Cl C2 ix z 1 CCI -1
z
1 2
1y, =g - ——] (B5)
2 ;;2 -1
and
1 aw , 2 1 1
-ﬁa--d—z—'f'-;-c_cz— i(1+z§-)+
[5 z
2%'%3 - inlz - T, = —] - iy = (36)
dx 1 ;;1 -1 5T, - 1

The force-free condition on the right side (Zv

1 g

= Zl) becomes

1 da
—i(l 4 =) 2t iy, —— + 1y, [
27 ax °1°% L.z -1 270 T 5
1 151
oy 4y, 4y
==t = (g T
dx 1 dx 1

and the force—-free condition on the left side (ZV =

36

)
- ]
g% ~ 1

(B7)

Zy) becomes



z 14
1 1 1 1 2
Plpasa bt o0
;2 d 2 2 1 ;ch— 1 ;2;2 -1
dz dr
1 2 2 = -
lZia 2, oq) (29)
dx 2 dx 2
Let
S A1 + izl’ Ty = Y, + izz, csl = cosel + 1 sinel,
CS = cose2 + i s1n62.
2
the force—free condition on the right side becomes
- iz
1 1 da 1 4 1
———— +
+ ]+ iz, T in (y1 + izl)(y1 - izl) -1

—_l a
(y, + 1iz)) Yax 71 1

o] (v, + 1zy)(y, - iz,) - 1 |-
2%y, * 1z -y, - 1z,)[(y, +1z)(y, - iz,) - 1]

dz dar
11 __a 1 [(y,- 1z,) - (cos8, - 1 sin6 )] =0
o - o, = 1 1 1 1
dx 1 dx
2 2
y -z - 12y z y z
a1+ 1 1 1%1 ]+ Llda N1 -4 LS
( 2 22)2 + 4 222 ¢ dx 2 + 22 2 + 22
yl 1 yl 1 yl 1 yl 1

Yl(z1 + iyl)

+
2 2
Yy + z) - 1
2 2 . _ - _ -
iy I(y2+ z, 1)[(y1 y2) 1(z1 zz)][(y1y2+ 2,2y~ 1) i(yzz1 ylzz)]
2! 2 2 2 2
[(yl- y2) + (zl— zz) ][(y1y2+ z,2, - " + (yzzl— ylzz) ]
az dr
1 1 a 1 =
il [(y1 - cosGl) - i(z1 - sinel)] =0
dx 1 dx
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Finally, the above equation can be separated into real and imaginary

parts to be

yZ
-2 —-——;L-L—__ + 1
( 2 + 2)2 a
1 7%

2 2
Yz(y2 +z, l)[(z1

o Ia
SRR

—2))y vy 2z, -

1) + (y1 - yz)(-ylz2 + yzzl)]

2 2
[y, =y + (2 = 20 1y, *+ 2,2y -

2 2
n- + (yzzl - ylzz) 1

y2 -z 2 z y
-1 4] 2 8y e+
( 2 +z) % ax + z L2 + z2 -1
yl 1 yl 1 yl 1
y. (y2 + 22 - D[(y. - y.)( +z.z, -1) = (2, = 2,)(-y.2, + y,2,)]
2%Y2 2 Y1 T YN, 1%2 1 278 Y1% T Y%
2 2 2 2
[(yl yz) + (z1 z2) ][(yly2 + 22, n° + (yzz1 ylzz) ]
dz dr
1 °1_ 2 1 [(y, = cosB,) — i(z, - sin6.)] =0 (89)
a & al’ - 1 1 1 1
dx 1 dx

Using a simple difference to represent

the derivatives, that is

da _fa 1 -l
P - — b
dx Ax Ax
dz _ %7 %-1 a;_1/ay
dx Ax
(yg = ¥y * a3qfap) —i(zy — 2y ) ¢ 8y, /a)
ay — ,
Ax
dr _ I'i ~ T
dx Ax

then the force—-free condition on the right side, with Y1» 21, etce
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representing Y1.s %],» etc., becomes
i i

PSS it W U S 1, y 4
2 2.2 a = 2 2 1 2 2
(yl + zl) Ax ¥ + z ¥y + z) 1

+

2 2
Yz(YZ + 22 - 1)[(21 = ZZ)(YIYZ + zlzz 1) + (y1y2)(_ylzz + yZzl)]

+

() = 3" + Gy = 2"y 3y + 25, = D+ (3,2 - 92,07

2 2
y, -z a, - a,_ z y
~[1 + 1 1 s T L,y 1 .
o2+ 2)2 TR 2, 2 12,2
Y 1 Y1 1 71 1

2 2
Yz(y2 tz, - 1)[(y1 - yz)(yly2 + 22 - 1) - (z1 zz)(-ylz2 + yzzl)]

2 2 2

[y, = 307 + (2

(v, -y, ©a;_,/a) - i(z) -z «a_/a)

4 4 i-1 e S _
* Ax
L 3173
- - [(y1 - cosel) - i(z1 - sinel)] =0
1, Ax
i
(B10)
Similarly the force-free condition on the left side becomes
o J2%2 1% %1 Y2 % N
2+l 9 & 2, 2 Tz T2
Y2 7 %) Y27 % Y2 7 %2

2 2
Yl(y1 +z) - 1)[(zl - z2)(y1y2 +zz, - 1) + (y1 - yz)(-ylz2 + yzzl)]

<+
[y = 3% + (2 = 2%y, + 22, - D? + (2 = y,2))7]

2 2

t{-[1 + IR R s = N I 72 s
( 2 + z2)2 ahx 2 + z2 Y2 2 + 22 -1
Yo7 2%y Yy 2 )
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2 2
v + 2] - DIy =)0y + 212y = 1) = (z) = 2))(y, 2, + y,2))]

(G5, = 907 + G2y = 202010y, + 212, = DF + (3,2, - 3,27

(y, -y ca, /a)) -1i(z, -z . a, . /a,)
2 2 i-1"71 2i 21—1 i

QI o

=
e
=
1
—_

Ax

i i i-1 -
e — [(y2 - cosez) i(z2 - sinez)] =0 (B11)
Yl Ax
i
Define:
y a, - a,_ y z
F3 = -2 Lt i i-1 L+ Y —_—1
L4y = 2, 2 N 2 2]
Y1 1 4 1 .77

2, 2
(9" * 2 - DIz = 2)(yy, + 212, - D) + () = 5,))yp2, + 95201

[y = v+ (2, = 202110y 3, + 212, = DP + (3,2, = 3,2,)°]

vy, Ty ta /ey W.™ M

a; " i-1 a8 4 1o * 3p/ayg
= - - = — (yl - cosel) =0
Ax Axyl
i
(B12)
2—22 a - a Z
Rh = < Y1 1 124 i-1 1 4
-1 + —5——5—] - = + Y, ——
2+ 2)2 o« o 2, 2 1 2, 2
M 1 N 1 71 1

2 . 2
V(v + 25 = DIy = y)(yyy, + zp2) = 1) - (2] = 2))(~y,2) + y,2))]

2
[y, = v)% + (2) = 200 110yy3, + 22, = D + (5,2 - 3,2,)°)

e L Y L U (U Y
i i i-1 i i i-1 .
1 — 2 (z, - sing,) = 0
a - a - 1 1
Ax Axyl
i
(B13)
_ ) 13 7% 7 )
F5 = -2 + = -y +
2t ¢ 2, 2 Y22 7 )
2 2 Y2 2 Y2 2



2 2
v (yp + 2] - DIz - 2))(yyy, + 212, = D + (y; - 5,)( ¥ 2y + ¥p2))] _

(3, = 3% + (2 = 221Gy y, + 22 = DP * (2] = y,2,)%]

a, Vo "V vl ooy ey /ey
i i i-1 i i i-1
_1 = - — (y, - cos8,) = 0
a a - 2 2
Ax Axy1
i
(Bl4)
2" 2 a - a z
_ Yo 7 % 1347 34 2 Yy
F6 = -[1 + —5———=] - = -y, ————— +
42 + 2292 « T = 2, 2 2 2 2
Yy 2 Yy 2 Yy 2

2 2
Yl(y1 + oz l)[(y1 yz)(yly2 + 22, 1) (z1 zz)(-ylz2 + yzzl)]

+
[yy = y% + (2 = 21y, + 22, = DD+ (52 - v,2,)°]

Zy T % *a;_,/a YI.™ M tay /ey

1 i i-1

a4

+ = — (z2 - sinez) =0
Ax Axy1

i

(B15)

For a conical flow, the derivative terms can be approximated by

da _ a dz _ g _ 8¢ dIr _ T _ 6T
—:—=~:g6’ _=_=a’-——:-;=a—
dx X dx X dx
Therefore,
Yy, 2 y Y, 2
F3 = -2 11 + L 1+ 11 +
( 2 z2)2 A y2 + ZZ y2 + z2 -
T A 175 1T

2, 2
(yy + 2z, = DI(z) = 2))(yy, + 2,2, = 1) + (y, = y,)(-y,2, +y,2))] i

\
Pl -yt (e - 5 MMy, gz, - D+ Gy, -y 200

[y1 + (yl - cosel)]/A =0 (B16)
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2 - 22 Z
F4 = -[1 + 71 1 -1 1 + N +
= PRI 0 S N R A R R
T 7 E yp T EOYy T
(2 + 22 - DIy, = y,)(y,y, + 22, = 1) = (2, = 2,)(=y,2, + y,2)]
) 1 27\ 1Y) 1%2 1 2 122 T V2%
TG eyt (e - e Mlyy. + - 1% 4 (g2, - y.2.)%] '
Y17 ¥ Z) 7 % Y192 T #2113 Y221 T N1%:
[z1 - (sine1 - zl)]/A =0 (B17)
¥y2 y z
FS = =2 g 172 2 +
o2 R 2T 2 Y277 32
(yy +25) Yo * 29 Yo v 2y~ 1
(y2 + 2% - iz, -z )(y,y, +z,2, = 1) + (y, =y, )(-y. 2z, +y,z.)]
1 1 1 2/V1Y, 122 1 22812 T Y%
G o - 2 sy, + 02+ Gz -yed
M) 217 % Y192 T %1% Y21 T V1%
[y2 + (y2 - cosez)]/A = 0 (B18)
2 - 22 Z
S PO S B T S TR S
= il BT 2 L 21
Yo T 2 Yo T2 Y T2

2 2
Yl(yl +z) l)[(yl - yz)(yly2 tzyz, - 1) - (z1 - 22)(—ylz2 + yzzl)]

2 2 2 2
[(y1 - yz) + (zl - zz) ][(yly2 tz2, - D™+ (yzzl - ylzz) ]

[z, = (sinb, -~ zz)]/A =0 (B19)

2 2
where A = a/8.

Define

Norm = [F12 + F22 + F32 + F42 + 752 + pp2]1/2

Variables Yis Y90 215 29 Yi» and Yy satisfying the requirement that
the Norm be less than or equal to 1078 are regarded as a set of
solutions.

The last terms of Equations (B12) to (B19) are the effect of the
vortex cut. When testing models without this effect, these terms are

eliminated.
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APPENDIX C

FORMULATION OF THE DERIVATIVE d th/dﬂ

Since the mean tangential velocity on the body is

z,2,~ 1 2,2~ 1
_ _ 1%1 2%2
T TP v L v LR
Cl e Cl e Cz e CZ
then
1 th (¢,z, - 1)[i(e—ie -z )eie - ie_ie(e16 -z.)
s L = —25in6 + y 171 1 1
Ua d6 1 i 2, -i0 - \2
(e -, ) (e -z,)
1 1
- 16, -i0 _ = . =18, 18 _
. (CZCZ 1)[ie (e cz) ie " (e cz)]
2 i@ 2, -i6 - .2
(e Cz) (e Cz)
(Clzl - 1)(?;1e“16 - Elele)
= -25inb + iy s -
1 i 2, -i6 -2
(e”" - g,) (e -z,)
1 1
- -16 _ - 8
(z,z, - (g, e 18 _ Z,et ")
. 272 2 2 (c1)
1Y ) 2, 10 = .2
(e7 - Cz) (e - Cz)
Let
T, =y, * iz,.
It follows that
dv
1 tm _ ., . .
Ta a8 - 2sinf + 1Y1
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[(y1+ iz )(y,~ iz) - l][(y1+ 1z;)(cos® - 1 sinf) - (y,- izl)(cose + i sind)]

[(cos® = y ) + 1(sind = z)]°[(cos8 = y,) = i(sind = z)]°

[(y2+ izz)(yz- izz) - 1][(y2+ izz)(cose - isin®) - (yz- iz,)(cos® + isind)

17y . 2 5
[(cosb - y2) + i(sinb - z,y)] [(cosb - yo) - i(sin® - z,)]
2 2

(y7 + 27 = 1)(z,cos8 - y. sin®)

- R 1 1 1 1

= -28inf - 2Y1 5 ) +
[(cosb - yl) + (sind - zl) ]

2 2 .
(y2 tz, - 1)(zzcose —_y2s1n6)
2y (c2)

[(cos® - yz)2 + (sin6 - 22)2]2

A line represents an actual separation line if thm/dB|e1 <0

on the right side and thm/dGI62 > 0 on the left side.
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APPENDIX D

FORMULATION OF THE COEFFICIENTS OF AERODYNAMIC FORCES

The lateral force 1s, based on the momentum theory,

F = f T - b

From Reference 10, the local force can be calculated as

|
=21 4 -g—dz+219€
1/2 oU o) c

Bout Bin

W'
- - +
T dz ZiSo t(a iB)

ZiSin(a - iB) (p1)

where CBout is the contour of the out-flow plane, with area S, ,,

and Cg is the contour of the in—-flow plane, with area Sy .
in

Note that
W .2 I‘li ai rzi ai
U i U 1 U 2 =
i Z i yA
1 2.
i i
Zﬂa?r o ZﬂaZF o
il i°2
= —2mala - e Ly + Loz, -2
i 27a,Ua gl - 2wa,Ua C2. =
i i z i i g
1, 2,
i i
- 2 1 1
= =27a u[l + ¥ (C - ._.—) -y (; - __.)] (DZ)
i 1 1 - 2,72 -
i i Cl i i cz
i i

To obtain the coefficients of aerodynamic forces, lateral force
is nondimensionalized by the base area. That is,
1 F

i
c +ic_. = ( ) (D3)
Yy Ny vai 1/2 ou?

For cases in this report, no sideslip effect is assumed. Therefore
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=2i 2 1

1 = ee— - - —— -_ - +

c + icC 5 { 2naia[1 + 71.(51. —) Y, (62 -]
Tay i

i 4 i iz
1i 2i
2wa§_1a[1 +y, o (g - _1 ) -y, (g, - %T-“Q]} -
i-1 i-1 1 i-1 i-1 Zy
i-1 i-1
2i 2 2i 2
—-—2- ma,o + 5 wa._la
‘ﬂ'aB naB
_ ia 2 1 _ _ 1 _
== {4ai[Y1.(C1. —) Yo (CZ, —)1]
a i i z i i C
B 1 2
i i
L U T R A T D VLY
i-1 i-1 1 i-1 i-1 Zy
1_1 1—1 (Dh)
Let
;1 = yl' + zy and CZ, Yo + ZZ,'
i i i i i
Then
y1 + iz1
ia 2 i i
c_ +ic, == {sally, {{y, + iz, ) - —g=——s—=} -
Y4 Ni a2 i 1i 1i li y2 + z2
B 1, 1
i i
Yo + :lz2
v {(g, + iz, ) = e B3] - 42 [y, Wy, +iz, ) -
2 WWa, 2, 7 p) i-1tY1, W 1
i i i Yo t 2z, i-1 i-1 i-1
i i
y + iz y + iz
i o1 . 724 i1,
5 5 } Y, {(y2 + iz, ) 5 5 }]
Y1 + z, i-1 i-1 i-1 Yy + z,
i-1 i-1 i-1 i-1
2
2a; - 2a;_,}
20 2 1
5 { Zai[Y1 z (1 5 ) Y, zz.(l 5 5 )]
ag i'i Y + z, i 2 +z,
i i i i



2a [v z (1 - ) -
R I
i-1 i-1
Y z 1 - )1} +
21-1 21-1 yg + z§
i-1 i-1
2a 2 1 _
i= {2a1[‘11 ¥, 1 - ) Yz.yz.(l 5 )]
aB i i y1 + 21 i i y2 + 22
i i i
2a, [y y a - ) -
1-1 1i-l li-l yf + z?
i-1 i-1
Y, oy, (- L )] + a - a?_ ) (D5)
2 2 2 2 i-1
i-1 "i-1 y2 + z2
i-1 i-1
It follows that
2aai 1
i aB i i Yy + zy i i Yo + z,
i i i i
a2
i-1
2v; oz 7 (1 -— )
i-1 "i-1 a; ¥q + z,
i-1 i-1
a2
i-1
2Y2 z, > a - 5 5 )} (D6)
i-1 "i-1 a; Yo + z,
i-1 i-1
2aa 1
Cy 7 2y v, 4 - ) T 21,7, (1 - =5 5~
i aB i1 Yy + zy i1 Yo z2
i i i
a2
i-1
vy v 7 (1 -— )+
i-1 "i-1 ai Yy + z)
i-1 i-1




i-1 1 -1
- + -
2y, Yy 5 1 5 5 ) +1 2} (D7)
i-1 "i-1 a; Yy + z, a;
i-1 i-1
and
c =J)¢C (D8)
y 1Y
Cy = 1 Cy (09)
i i
For conical flow (such as on a cone), all flow properties
changing with respect to x are constant, Therefore,
C. = 2a{-2y,z (1 = =) + 2y,2, (1 = =)} (D10)
y 171 T2 222 T2
nntz Yo T 2y
C = 20{2y.y. (1 = =) = 2y.y. (1 = =) + 1} (DL1)
N 171 2 . 2 272 2 . 2
Btz Yo ¥ 2
CL = CNcosa
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Table 1: Effective Angles of Attack for Three Bodies

a = Geometric Angle of Attack

a, = Effective Angle of Attack

f.r. = Fineness ratio

8 Deg. cone Tangent Ogive Tangent Ogive
of for. = 3,5 of f.r. = 5,0
a % O R
5.0 - 4,56 4,74
10.0 8.93 9.09 9.43
12,0 10.69 10.88 11.29
14.0 12,44 12,66 13.12
16.0 14,17 14,42 14,95
18.0 15,89 16,16 16.75
20.0 17,58 17,88 18,53
22.0 19,25 19,57 20,27
24,0 20.89 21,24 21.99
26.0 22,51 22,88 23.66
28.0 24,09 24,48 25,31
30.0 25.64 26,05 26,90
35.0 - 29,78 30.65
40,0 —— 33.16 ——

-—— not calculated
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All Models in This Figure Are With ‘Cut’ Terms in Force Free Condition

o- Experimental Data (Ref. 16)
Resuit from Stagnotion Seporction Mode!
------ Result from Model 1
— — — Result from Mode! 2
——— = Result from Model 3
~——-——-~ Result from Model 4
—_——- ~ Result from Model 5
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€, (Lt Cosfficlent)
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! I
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0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
ot (Angle of Attack)

Fig.6 Lift Coefficient of o B Deg. Cone as a Function of Angle
of Attack(Symmetric Case)
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€, (Lift Coefficlent)

All Models in This Figure Are Without ‘Cut’ Terms in Force Free Condition

Q- Experimental Dato (Ref. 16)
Result from Stagnation Separotion Model
------ Result from Model 1
— — — Result from Model 2
———:——~ Result from Model 3
——-~—-~~ Result from Model 4
———————- - Result from Model 5
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o (Angle of Attock)

Fig.7 Lift Coefficient of c 8 Deg. Cone as ¢ Function of Angle
of Attack(Symmetric Case)
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Result from Mode!l 3 Without ‘Cut’ Terms in Force Free Condition

Q
x & x Bx
q’ﬁ Q.ﬁ
A = 2.500 A = 2,750
8, = 46.61 6, = 44.86
[ @

2.000
51.12

@>

Fig.8 Symmetric and Asymmetric Vortex Core Positions
of o 8 Deg. Cone as o Function of Incidence
Parameter A (6, +6,= 180 )
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Result from Mode! 3 Without ‘Cut’ Terms in Force Free Condition

a <]
x @ b 4 X X
)
A = 3.500 A = 3.750
8, = 39.55 6, = 38.04
[ ] < ]
x OBy x By
vA\Q oK
A = 3.000 A = 3.250
8, = 42.85 8, = 41.15

Fig.8 Concluded
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ICYI (Side Force Cosfficient)

€, (Ut Coefficient)

1.5

| Based on Geometric Angle of Attack 6
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20—
/

15—

B )
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B ]
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0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

) (Angle of Attack)

Experimenta! Dota (Ref. 16) '
Symmetric Result From Model 3 Without ‘Cut Terms
— — — Asymmetric Result From Model 3 Without ‘Cut Terms

o~

F1G.9 Lift Coefficient ond Side Force Coefficient of o 8 Deg.
Cone as a Function of Angle of Attack
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o~ Experimental Data (Ref. 16)
~—————— Symmetric Result From Model 3 Without "Cut" Terms
------ Asymmetric Result From Model 3 Without “Cut" Terms
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Based on Effective Angle of Attack o
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Fig.10 Uift Coefficlent and Side Force Coefficiant Calculoted ot
Effective Angle of Attack of a B Deg. Cone cs @ Function
of Angle of Attack
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All Models in These Figures Are Without ‘Cut’ Terms in
Force Free Condition

2.0 Result from Stognation Separation Model

)

B

(¢4 —
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<
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o
= o N | L

1.0 2.0 3.0 4.0
2.0
Result from Model 3

)
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£
® 10—
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5
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o
- 0.0 | | | | |

1.0 20 3.0 4.0

A (Incidence Parameter)

Fig.11 Vortex Strength Ratio for Different Models of o
8 Deg. Cone as a Function of Incidence
Paorometer A
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Result from Model 3 Without ‘Cut’ Terms in Force Free Condition

A = 2.500 A = 2.750
8, = 46.61 8, = 44.66
a
< ]

A

.000 A

2 2.250
51.12 6, = 48.74

A
6

Fig.12 Low Branch Symmetric and Asymmetric Vortex Core
Positions of ¢ 8 Deg. Cone as a Function of
Incidence Parameter A (8, +8,= 180 )
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Result from Mode! 3 Withaut ‘Cut’ Terms in Force Free Condition

Fig.12 Concluded
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Mode! 3 Without ‘Cut“Terms in Force Free Condition
Up Bronch Result
— — — Low Bronch Result

»
o

Result from Asymmetric Case (Left Vortex)
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g Result from Asymmetric Case (Right Vortex)
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§ 0.5 -
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0.0 1 I 1 I i |
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A (Incidence Parometer)

Fig.13 Vortex Strength Rotio for Both Branchs of a 8 Deg.

Cone a3 a Function of Incidence Parameter A
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e- Experimental Dota (Re =0.8 +10 ,M=0.70, Ref.18)
------ Result from Model 3 for 25 Stotions (Symmetric Cose)
Result from Model 3 for 25 Stotions (Asymmetric Case)
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Fig.14 Normoal Force Coefficient of o Tangent Ogive (Fineneas Ratio = 5.)
os o Function of Angle of Attock
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o- Experimental Doto (Re =0.8 #106.M=0.70. Ref.18)
------ Result from Model 3 for 50 Stotions (Symmetric Cose)
Result from Model 3 for 50 Stations (Asymmetric Cose)
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o (Angle of Attack)

Fig.14 Concluded'
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B Experimental Doto (Re =0.8 ¢ 106,M=0.70. Ref.18)
Result from Model 3 for 50 Stations
------ Result from Model 3 for 25 Stations
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Bosed on Geometric Angle of Attack
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Fig.15 Side Force Coefficlent of a Tangent Ogive (Fineness Ratio = 5.)
os o Function of Angle of Attack (Asymmetric Case)
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..... Result from Model 3, For 25 Stations (Symmetric Case)

~— —— —— Result from Model 3, For 25 Stotions (Asymmetric Cose)

¢ = 30.0 Deg.

1.0

0 = 30.0 Deg.

1 I ] I I I ] I J l

-1.0
0.0

X/D
Fig.168 Trocing of Vortex Core Position In o Tangent Ogive
(Finenese Rotic = 3).
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o— Experimental Data (Re =0.8 #10° ,M=0.70, Ref.18)
------ Result from Model 3 for 25 Stotions (Symmetric Cose)
Result from Model 3 for 25 Stotions (Asymmetric Case)
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Baosed on Effective Angle of Attack

g
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-3 (Angle of Attack)

Fig.17 Normal Force Coefficient Colculated ot Effective Angle of
Attock of o Tongent Ogive (Fineness Ratio = 5.) as o
Function of Angle of Attack
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o- Experimental Dot (Re =0.8 *10° ,M=0.70, Ref.18)
------ Result from Model 3 for 50 Stations (Symmetric Cose)
Result from Mode! 3 for 50 Stations (Asymmetric Case)
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X (Angle of Attack)

Fig.17 Concluded
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o- Experimental Doto (Re =0.8 & 10 ,M=0.70, Ref.18)
Result from Model 3 for 50 Stations
------ Result from Model 3 for 25 Stations
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Based on Effective Angle of Attack
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ot (Angle of Attack)
Fig.18 Side Force Coefficient Colculoted at Effective Angle of

Attack of o Tangent Ogive (Fineness Rotio = 5.) as o
Function of Angle of Attack (Asymmetric Cose)
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e- Experimental Dato (Re =0.35 +10° Ref.16)
>— Experimental Dato (Re =0.80 #10°, M=0.80, Ref.18)
------ Result from Model 3 for 35 Stotions (Symmetric Caose)
————  Result from Model 3 for 35 Stotions (Asymmetric Cose)
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>
o

by
o
IIIIIIIIIlllll]TlTI‘lllllll

g
o

CN (Normal Force Coefficlant)

1.0

0.0 L11d 1||1||||||||||||||||1||||||1||||||
0.0 5.0 100 150 200 250 300 350 400 450

o (Angle of Attack)

Fig.19 Normal Force Coefficlent of o Tangent Ogive (Fineness Rotio 3.5)
os a Function of Angle of Attock
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CN (Normal Force Coefficlent)

o— Experimental Doto (Re =0.35 #10° Ref.16)

>— Experimentol Data (Re =0.80 s10° M=0.8, Ref.19)

------ Result from Model 3 for 50 Stotions (Symmetric Cose)
Result from Model 3 for 50 Stotions (Asymmetric Cose)
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Fig.19 Concluded
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o- Experimental Doto (Re =0.35 ¢ 10.,  Ref.16)
>— Experimental Dota (R =0.80 e 10,M=0.8, Ref.18)
—————— Result from Model 3 for 50 Stations

------ Result from Mode! 3 for 35 Stotions
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Fig.20 Side Force Coefficient of o Tangent Ogive (Fineness Rotio = 3.5)
os o Function of Angle of Attack (Asymmetric Cose)
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o- Experimentol Data (Re =0.35 +10° Ref.16)

> Experimental Data (Re =0.80 #10°M=0.8, Ref.19)

------ Result from Model 3 for 35 Stotions (Symmetric Case)
Result from Model 3 for 35 Stotions (Asymmetric Case)

6.0
Based on Effective Angle of Attack

I I
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o (Angle of Attack)

Fig.21 Normal Force Coefficient Calculated ot Effective Angle of
Attack of o Tangent Ogive (Fineness Rotio = 3.5) os a
Function of Angle of Attack
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0.0

o— Experimental Dato (Re =0.35 +10°

Ref.16)

>— Experimental Dota (Re =0.80 +10;M=0.8, Ref.18)
------ Result from Model 3 for 50 Stotions (Symmetric Case)
Result from Model 3 for 50 Stations (Asymmetric Case)
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Fig.21 Concluded
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e- Experimental Doto (Re =0.35 & 100, Ref.16)
>— Experimental Dato (Re =0.80  10,M=0.8, Ref.19)
Result from Mode!l 3 for 50 Stotions

------ Result from Mode! 3 for 35 Stotions

4.0

Based on Effective Angle of Attack
305
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i o tn
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o (Angle of Attack)
Fig.22 Side Force Coefficient Colculoted ot Effective Angle of

Attack of o Tangent Ogive (Fineness Ratio = 3.5) as o
as a Function of Angle of Attack (Asymmetric Cose)
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@— Experimenta! Doto for Re,=3.9 = 10' (Ref.20)
------ Result from Model 3, For 50 Stotions (Symmetric Cose)
—— — — Result from Model 3, For 50 Stations (Asymmetric Case)

o = 35.0 Deg.

a = 350 Deg.

0.0 1.0 2.0 3.0
_ X/D
Fig.23 Vortex Core Positions for a Tangent
Ogive of Fineness Ratio of 3.5
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1.0

Angle of Attock = 30 (Degree)
Experimental Dato Shows Cy = 1.0

o
o
|

Cy (Side Force Coefficlent)
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Flg. 24 The Sensitivity of Vortex Strength ond Side Force
Coefficlent Due to The Asymmetry of Separction
Points on on 8 Degree Cone
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20

| Angle of Attack = 36 (Degree)
Experimenta! Doto Shows Cy, = 2.25
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Cy (Side Force Coefficient)
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Fig. 25 The Sensitivity of Side Force Coefficlent Due to

The Asymmetry of Seporation Points on o Tangent
Ogive (Fineness Rotio = 5.0)
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